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ABSTRACT

Sampled drums can be used as an affordable way of creat-
ing human-like drum tracks, or perhaps more interestingly,
can be used as a mean of experimentation with rhythm
and groove. Similarly, AI-based drum generation tools can
focus on creating human-like drum patterns, or alterna-
tively, focus on providing producers/musicians with means
of experimentation with rhythm. In this work, we aimed
to explore the latter approach. To this end, we present a
suite of Transformer-based models aimed at completing au-
dio drum loops with stylistically consistent symbolic drum
events. Our proposed models rely on a reduced spectral
representation of the drum loop, striking a balance between
a raw audio recording and an exact symbolic transcription.
Using a number of objective evaluations, we explore the va-
lidity of our approach and identify several challenges that
need to be further studied in future iterations of this work.
Lastly, we provide a real-time VST plugin that allows mu-
sicians/producers to utilize the models in real-time produc-
tion settings.
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CCS Concepts

•Applied computing → Sound and music computing; Per-
forming arts; •Information systems → Music retrieval;

1. INTRODUCTION
In many contemporary sample-based styles of music, pro-
ducers often use drum parts that are re-imaginations of pre-

∗Equal contribution

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

viously recorded/produced patterns. These drum loops can
be re-utilized with little to no modification, or alternatively,
can be temporally sliced and re-arranged, even to the ex-
treme that the resulting pattern would no longer resemble
the original pattern. Additionally, a producer can choose
to modify a given pattern by adding extra percussive parts
on top of the sampled pattern. The latter approach is the
target of this work. Specifically, we develop an automatic
drum generation system that provides stylistically consis-
tent symbolic drum suggestions that can complete (or rather
infill/inpaint1) an existing audio loop.

One objective for this work was to develop the system
such that it could affordably be used in production set-
tings. Moreover, having developed a number of drum gener-
ation tools in our previous works, we also wanted to explore
whether our symbolic-to-symbolic generative systems could
be efficiently adapted to work with audio inputs.

Hawthorne et al. [13] demonstrate that challenges involv-
ing music performance generation using raw audio, rang-
ing from structural incoherence [26] to low audio fidelity
[6], can be significantly improved by separating the tim-
bral/acoustic aspects of the generation process from the
compositional elements. In particular, in their model (called
Wave2Midi2Wave), the authors use an existing piano tran-
scription system [12] to transcribe the raw audio recordings
of piano performances. Subsequently, new performances are
generated using the transcribed MIDI scores in conjunction
with the Music Transformer model [15]. The resulting sym-
bolic performances are then synthesized into audio using a
conditional WaveNet model [26]. For this work, we take a
similar approach by factorizing the system into two sepa-
rate stages (audio to symbolic to symbolic), however, with
several significant differences described below.

In Wave2Midi2Wave, musical events in the audio record-
ings need to be accurately detected and classified. How-
ever, we suspected that in our case, we might not need to
classify the drum events in a given recording perfectly; in-
stead, having an understanding of the spectral structure of

1Different terminologies such as Infilling and Inpainting can
be found in the literature referring to the task of completing
partial information. In the music domain, the term infilling
can refer to the task of filling in suggestions between two
parts detached by a missing gap [17], or in other works [9],
can refer to overlaying a score with consistent suggestions.
In the image domain, the term Inpainting [7], is also used to
refer to painting in corrupted or missing segments of an im-
age. In the context our work, we use infilling and inpainting
interchangeably to refer to the task at hand.



the recording would be enough to identify potential spaces
within the recording that can be infilled. Exploring the reli-
ability of a reduced representation of the audio, as opposed
to an accurate transcription, was indeed a major motivation
behind this work. Secondly, drum loop samples are often
used in a grid-based environment as they are primarily uti-
lized in a hardware sampler, a groove-box or a digital audio
workstation. Moreover, as opposed to long-term piano per-
formances in which tempo can be intentionally varied for
expressivity, in the case of sampled drum loops utilized in
a grid-based environment, the loop’s tempo is most likely
constant and fixed to the tempo of a project. For these
reasons, inspired by [9], we decided to use a tempo agnostic
representation in which only drum hits, their corresponding
velocity/loudness values, and their timing relative to a fixed
grid are registered (Section 2.1.1).

1.1 Related Work
There are a number of works which address infilling of drum
patterns with symbolic suggestions. Infilling in these works
can refer to either generating patterns for fully masked seg-
ments of a score or generating additional events superim-
posed on top of an existing score. For example, Dahale
et al. [5] provide a three-stage symbolic-to-symbolic drum
accompaniment generation system in which, during the fi-
nal stage, a pre-generated drum pattern is fully masked
within a single bar, and subsequently, the masked bar is
completed with a drum fill. On the other hand, Lee et
al. [19] present PocketVAE which aims to complete a user
provided drum template by by removing and/or infilling
extra events. Moreover, Gillick et al. [9] present a suite
of sequence-to-sequence variational auto-encoder models to
generate humanized drum performances, including an in-
filling model capable of generating hi-hat patterns for a
MIDI drum performance lacking hi-hat parts. Moreover,
they demonstrate the effectiveness of modelling symbolic
drum performances using a non-tokenized tempo-agnostic
grid-relative representation. Along with this work, Gillick
et al. have released a sizable dataset of professional sym-
bolic drum performances. This dataset and the proposed
data representation methodology serve as the main inspira-
tion for our work.

Although not focused on drums, there are a few other
notable works on infilling [16, 4, 11, 21]. Huang et al.
[16] introduce a convolutional neural network (CNN) model
trained to reconstruct partial scores. Similarly, Chang et
al. [4] propose an XLnet-based [31] infilling model capable
of generating infilling suggestions of variable length. More-
over, Guo et al. [11] present a multi-track transformer-based
infilling system in which the generations can be modified us-
ing several user-controllable parameters.

In the following sections, we will discuss our methodology
and provide the results of our findings, demonstrating the
potential and practicality of this approach and the direc-
tions needed to further explore in the subsequent iterations
of the work.

2. METHODOLOGY
Figure 1 illustrates an overview of the methodology used
in this work. The model used for this work, Transformer
Groove Infilling (TGI), consists of a stack of Transformer
encoders [27] and a custom output layer. We trained several
TGI models on various experiments defined in Table 1. Ta-
ble 2 summarizes the hyperparameters for the TGI models.
In Section 2.1, we discuss the data used for training and
the input/output representations used in TGI experiments,

and in Section 2.2, we briefly review the training process.

Exp. Task

IH/IHS

Infilling Closed Hi-Hats: predicting the closed hi-hat
part of an input audio drum loop that lacks the closed
hi-hat part. Additionally, we trained an identical ver-
sion of the model that receives a symbolic drum score
instead (IHS).

IKS
Infilling Kicks and Snares: predicting the kick and/or
snare for an input audio drum loop that lacks the kick
and/or snare part.

IRL/IRH

Infilling Random: predicting events (hits) for an in-
complete input audio drum loop. We trained two in-
stances of the TGI for this task: the Infilling Random
Low (IRL) and the Infilling Random High (IRH) mod-
els, in which we respectively mask 10-30% and 40-
70% of the hits present in the original drum loop

Table 1: Infilling experiments

2.1 Dataset and Data Representation
The data used for training the TGI models was obtained
from the Groove MIDI Dataset (GMD)2 [9]. From GMD,
we used 20,270 2-bar MIDI drum loops with a time signature
of 4/4 and a vocabulary of 9 instruments.

During the training process, we mask3 the drum loops
partially according to the infilling tasks in Table 1. We
use a direct symbolic representation of the masked elements
as output targets (Section 2.1.1). Then, we synthesize the
partially masked versions of the samples using several drum
kit SoundFonts (Section 2.1.3) and subsequently extract a
reduced representation from the resulting raw audio loops
(Section 2.1.2); we use these representations4 of audio loops
as inputs of the TGI models.

Model
Hyperparameter IH/IHS IKS/IRL/IRH
Model embedding dimension 32 256
Feedforward dimension 512 512
# of attention heads 16 2
# of encoder blocks 6 6
Training epochs 110/70 60/160/150
Relative Size 1 13.6

Table 2: Model hyperparameters5

2.1.1 Symbolic Representation (HVO)
Drum loop sequences can be symbolically represented by
three T × M matrices, where T corresponds to the number
of time-steps, in this case, 32 (2 bars with 16 sub-divisions
each), and M corresponds to the number of instruments,
in this case, 9. Each of the matrices contains information
about the hits (H), velocities (V), and offsets (O). This rep-
resentation is similar to the one used in [9].

2.1.2 Reduced Audio Representation (MSO)
We extract a set of multiband synthesized onsets (MSO)
from the audio loops. MSO maps an onset spectrogram to
32 time steps and eight frequency bands; as such, MSO is
a reduced representation in time and frequency. MSO is
obtained as follows:

1. Differential spectrogram6 We compute the Short-Time

2https://magenta.tensorflow.org/datasets/groove.
3In this context, masking refers to removing information
4Except IHS model that is a symbolic-to-symbolic generator
5Tuned using the Weights & Biases [1] random sweep tool.
6Differential spectrogram calculations are adapted from [3].



Figure 1: An overview of the methodology used in this work

Fourier Transform (STFT) using the librosa7 [20] im-
plementation. Then, the spectrogram resulting from
the dot product of the STFT with a triangular filter-
bank with logarithmically spaced center frequencies is
obtained. The difference between each frame and the
previous 22 frames is computed to obtain a differen-
tial spectrogram (i.e., the moving mean is subtracted).
The spectrogram is then half-wave rectified, logarith-
mically scaled, and clipped.

2. Frequency resolution reduction Subsequently, we re-
duce the number of frequency bins to 8 bands. The
center frequencies of these bands have been obtained
from [14], where they determine the frequency bands
that perform well for drum kit instrument classifica-
tion. To reduce the initial frequency bins to these
eight bands, we select each band’s highest onset spec-
trogram value and time-frame.

3. Time resolution reduction Next, we treat each band
in the frequency-reduced differential spectrogram as
an onset strength envelope and pass it through the
librosa [20] onset detection function. This function
returns the time-frames at which the hit onsets oc-
cur. Since all our input loops have a 2-bar measure,
we split each bar into 16 divisions, resulting in a 32
time-step grid for each 2-bar loop. We create an offset
matrix and an onset strength matrix with 32 columns
(time-steps) and eight rows (frequency bands). The
offset matrix values correspond to the difference be-
tween the time frame at which a hit onset occurs and
its nearest time-step (column) in the grid. The values
in the onset strength matrix correspond to the differ-
ential spectrogram value at the time-frame at which
the onset occurs. The stacking of these two matrices
results in the final audio input representation, which
has a shape of 32×16.

2.1.3 Preparation of Training Sets
We used one SoundFont for synthesizing the input audio
loops in the IH experiment (refer to Table 1). For the IKS,
IRL, and IRH experiments, we use a pool of 25 SoundFonts
to synthesize the audio loops to emulate the variability of
real drum kits, as it is typically done in automatic drum
transcription tasks [29]. In the case of the IKS, we also
use different combinations of removed instruments (kicks,
snares, or kicks and snares) with SoundFonts. Similarly, we
combine different random samplings of the original GMD se-
quences with various SoundFonts in the IRL/IRH datasets.
The resulting dataset sizes are shown in Table 3.

2.2 Training
The models were optimised using the stochastic gradient
descent algorithm, and we used early stopping regulariza-
tion. The epochs at which we early stopped the models can

7https://librosa.org/.

Experiment
Split IH/IHS IKS IRL IRH
Train (80%) 15036 63299 64766 64235
Test (10%) 1921 8181 8215 8153
Validation (10%) 1681 7755 8081 8008
Total 18638 79235 81062 80396
Relative size 1 4.25 4.35 4.31

Table 3: Processed datasets sizes by experiment. Sizes refer
to number of 2-Bar Beats in 4/4.

be found in Table 2. The loss L for each voice i at time-step
j was defined as follows:

Li,j =

{
w (Lhi,j + Lvi,j + Loi,j) if hi,j = 0.

(Lhi,j + Lvi,j + Loi,j) if hi,j = 1.
(1)

where Lh corresponds to the hit loss (binary cross-entropy),
Lv to the velocity loss (mean squared error), and Lo to
the offset loss (mean squared error). The weighting factor
w ∈ (0, 1] is a hyperparameter that allows for balancing the
importance of silences and hits, as silences significantly out-
number hits. The final loss for each sequence corresponds
to the average of losses per voice and time-step (Li,j).

3. RESULTS
For evaluating the TGI models, we use the methodology
proposed by Yang et al. [30]. In this approach, for each set
of data (ground truth or generated), a set of features are ex-
tracted. Subsequently, two sets of analyses are conducted
on the collected features: (1) Absolute Analysis: statistical
distribution of the features within each set, and (2) Rela-
tive Analysis: pair-wise comparison of feature values from
within a set (intra-set) and pair-wise comparison of feature
values from one set with all values of the same features cor-
responding to another set (inter-set). Sections 3.1 and 3.2
respectively provide the absolute and relative analyses of
the generations conducted using a set of drum-related fea-
tures summarized in Table 5 [10, 2].

Feature Description
Total Step Density Ratio of steps with at least one hit

over the total number of steps [10]
Average Voice Density Per step voice densities averaged across

all steps. Density refers to the proportion
of voices active at step

Vel Similarity Score Difference between velocities of
the second bar minus the first one

Weak to Strong Ratio Ratio of the number of onsets not on
downbeats to the ones on downbeats

Swingness Measure of the amount of swing [2]
Hisync Syncopation of Hats, Ride and Crash [10]
Midsync Syncopation of Snare and Toms [10]
Lowsync Syncopation of Kick [10]

Table 4: List of features used for evaluation

For the evaluations, we used the validation subset of GMD;
this subset was not used during the training or hyperparam-



eter tuning processes. The resulting examples were pro-
cessed as discussed in Section 2.1.

3.1 Absolute Analysis
We start the evaluations by looking into the distribution8 of
the generated hits and their associated velocity and offset
values. Subsequently, we use the relevant features in Table
4 to compare, in absolute terms, the generations against the
expected ground truth targets.

In the HVO representation used for this work, silent events
(non-hits) significantly outnumber onset events (hits). To
evaluate whether the models generate patterns with the
same ratio of hits to non-hits, we reviewed the box-plot
distribution of the number of hits per each of the generated
samples obtained from each TGI model. Moreover, to eval-
uate whether the models generate hits at correct positions,
we reviewed the Predictive Positive Value (PPV) of genera-
tions - i.e. the proportion of true hits (hits matching ground
truth) to false hits (see Figure 2). Comparing the number
of predicted hits (middle plot in Figure 2) to the ground
truth hits (left plot in Figure 2), we can see that in the
case of IHS and IH, while similar to the ground truth data,
the interquartile ranges of the number of generated hits are
positively skewed, and the medians are slightly higher than
that of the ground truth data. Moreover, the skewness and
the median of the same distributions for IKS, IRL and IRH
are on par with the ground truth distributions. However,
a closer look at the PPV values shows that a noticeable
number of the generated hits occur at locations where si-
lence was expected. Nevertheless, in all models, at least
half of the hits in over half of the generated samples are
predicted at their desired locations.

Figure 2: Distributions of hits per sample

The distribution of the per-sample average velocities and
offsets of the hits are shown in Figure 3. This figure shows
that in all cases, the models struggle to replicate the velocity
and offset variations existing in the training data.

Figure 3: Distributions of velocities and offsets per sample

The features presented in Table 4 can be used to better
understand the structural quality of the generations. Table
5 summarizes the mean and standard deviation of the dis-
tribution of the features extracted from the generations as
well as the ground truth samples.
Total step density values can be interpreted as the ratio

of time steps containing at least one drum hit to entirely
silent time steps. Moreover, Average Voice Density is a

8Audio samples: TransformerGrooveInfilling.github.io
code: github.com/pelinski/TransformerGrooveInfilling

similar measure with the distinction that it also considers
the number of onsets occurring at a time step. In the case of
IHS and IH models, the density of generated onsets is higher
than the targets. This observation is consistent with the dis-
tributions of hits in Figure 2. On the contrary, the IKS and
IRH generate patterns with the same ratio of non-silent to
silent time steps while also ensuring that the number of on-
sets in non-silent time steps is consistent with the ground
truth data. Finally, the IRL model generates patterns that
contain more silent time steps than the ground truth; how-
ever, as the Average Voice Density values are on par with
the ground truth, we suspect that the model generates more
hits at non-silent time steps. Moreover, similar to ground
truth data, the velocity similarity scores show that the mod-
els generate highly symmetrical patterns in all cases, except
for IRL. Nevertheless, in the case of IHS, IH and IKS, the
generations are more symmetrical than expected.

Swingness is a measure of delayed second eight notes [2].
The swingness values in all infilling tasks are significantly
smaller than the ground truth data. This observation is ex-
pected as the amount of swing in a given pattern is highly
dependent on the offsets of events, and as previously dis-
cussed, all models struggle to generalize the offset patterns
available in the training set. Finally, the only model capable
of generating patterns syncopated similarly to the ground
truth patterns is the IRH model.

3.2 Relative Analysis
Similar to [30], for each of the feature sets obtained from the
generations and the ground truth patterns, we create two
sets of relative distances: (1) Ground truth intra-distances:
distances of each feature value within the ground truth set
from every other value within the same set, and (2) Inter-
distance of generations from ground truth: distances of each
feature value in the generated sets from every correspond-
ing values in the ground truth set. Subsequently, we use a
Gaussian kernel (using Scott’s bandwidth selection method)
[24, 25] to estimate a probability density function (pdf) to
describe the distribution of the values in the inter/intra
sets. Finally, for each feature, the Kullback–Leibler (KL)
divergence distance and the overlapping area (OA) of the
inter-distance pdf and the intra-distance ground truth pdf
are measured to establish the closeness and similarity be-
tween the distributions. Plotting KL and OA for two sets
of generations allows for evaluating the performance of two
generative models against one another (see Figure 4).

Figure 4: Inter-distances of generations from ground truth
samples compared against intra-distances within ground
truth samples. (left plot: the analysis is conducted only on
the hi-hats. Middle and Right plots: analysis of the complete
infilled pattern, i.e. generations superimposed on inputs

The first relative comparison was conducted to investigate
whether there is any merit to using the reduced audio rep-
resentation (MSO) instead of a symbolic version. To this



IH IKS IRL IRH
GT Pred (Symbolic) Pred GT Pred GT Pred GT Pred

Total Step Density (0.37, 0.22) (0.48, 0.28) (0.47, 0.27) (0.38, 0.24) (0.39, 0.26) (0.20, 0.11) (0.12, 0.09) (0.48, 0.18) (0.42, 0.20)
Avg Voice Density N/R N/R N/R (0.04, 0.03) (0.05, 0.03) (0.02, 0.01) (0.02, 0.01) (0.07, 0.03) (0.06, 0.03)
Vel. Sim. Score (0.77, 0.31) (0.94, 0.11) (0.95, 0.03) (0.83, 0.28) (0.91, 0.18) (0.33, 0.44) (0.23, 0.40) (0.80, 0.30) (0.83, 0.30)
Weak to Strong Ratio (2.77, 8.30) (1.12, 1.49) (1.71, 2.68) (2.16, 6.33) (1.07, 2.12) (1.84, 3.05) (1.13, 2.50) (1.83, 2.18) (1.43, 1.98)
Swingness (0.21, 0.32) (0.00, 0.01) (0.00, 0.00) (0.23, 0.29) (0.03, 0.04) (0.19, 0.29) (0.00, 0.01) (0.29, 0.30) (0.01, 0.02)
Hisync (0.19, 0.17) (0.11, 0.12) (0.12, 0.11) N/R N/R (0.07, 0.08) (0.04, 0.06) (0.15, 0.14) (0.12, 0.12)
Midsync N/R N/R N/R (0.15, 0.20) (0.17, 0.21) (0.08, 0.10) (0.06, 0.10) (0.17, 0.16) (0.15, 0.18)
Lowsync N/R N/R N/R (0.11, 0.13) (0.03, 0.06) (0.04, 0.06) (0.02, 0.04) (0.10, 0.09) (0.06, 0.07)

Table 5: Mean and standard deviation (µ, σ) of features extracted from all samples within each set. Note: In some cases,
certain features are not relevant (N/R). e.g., in the case of IH, samples only contain closed hi-hats, consequently, Midsync and
Lowsync are irrelevant. Also, in this case, average voice density will be equal to the total step density divided by a factor of 9

end, we studied the relative performance of the IHS and
IH models (left plot in Figure 4). For this comparison, we
only compared the generated closed hi-hats on their own.
The resulting KL/OA plot shows that the pdf of the intra-
distances from the two versions are on par with each other,
with negligible KL difference values in the case of the Ve-
locity Similarity Score.

To establish the relevance of the infilling suggestions in
the context of the partially masked inputs, we used the same
relative evaluation except that we compared the generations
superimposed with the partially masked targets and com-
pared them against the complete unmasked ground-truth
targets (middle and right plots in Figure 4). The results
(KL < 0.1, OA > 0.7) show that, in all cases, the infilled pat-
terns statistically hold high level of similarity to the target
patterns.

Figure 5: Impact of SoundFonts on KL/OA distributions

Finally, the relative analysis done here is computationally
intensive. As a result, we had to limit the relative analysis
to a subset of examples in the validation set. The 2-bar sam-
ples in the validation set come from a limited number of long
performances split into smaller 2-bar segments. These long
performances vary in duration, and certain performances
are over-represented in the validation set. We used three
evenly separated segments from each long performance to
ensure balanced representation, resulting in 116 samples.
Depending on the target infilling task, these samples were
partially masked and then synthesized using a single drum
kit SoundFont. That being said, we were aware that, given
the nature of the task at hand, the selection of the drum
samples might have highly impacted the performance. As
a result, we repeated the analysis for all of the available 25
SoundFonts and looked into the distribution of the KL/OA
values (see Figure 5). These results indicate that, while
occasionally there are outliers in the distributions, all dis-
tributions have minimal inter-quartile ranges, attesting that
the analysis conducted here is often consistent regardless of
the drum-kit used for synthesizing the input patterns.

4. DISCUSSION
The absolute and relative evaluations presented in the pre-
vious section are an effective way of validating the final
versions of our models. Moreover, they allow us to identify
the short-comings of our approach so as to better design the
next iterations of our work. While feature-based statistical
analysis of the generations allows for gaining an overview

of the performance of a model, promptly interpreting the
results of such analysis is not possible as the obtained per
feature statistics need to be actively and thoroughly stud-
ied, not only on their own but also relative to one another.
As such, this validation process can not be effectively uti-
lized during different stages/epochs of the training process.
In this section, we present a simple global representation
of generations, called velocity heatmap. This representation
proved highly effective in identifying invalid models during
our training process. Also, we demonstrate how this repre-
sentation can be used to gain a better understanding of the
results of the statistical feature-based evaluation during the
final validation process of our work.

A velocity heatmap is a 2-dimensional histogram visualiz-
ing all the onsets corresponding to a single drum voice. To
obtain the velocity heatmap for each drum voice, we create
a scatter plot in which each point represents an onset at a
given location within a 2-bar duration (x-axis) and its cor-
responding velocity value (y-axis). We iterate through all
the samples within a given set and place all the onsets for
the desired drum voice within the scatter plot. Finally, a
2-dimensional histogram (heatmap) is created based on the
compiled scatter plot. In the resulting heatmap (e.g. Figure
6), the ‘warmer’ regions indicate a higher density of onsets
while ‘colder’ regions indicate a lower density. We divide
the heatmaps by genre to visualize the common patterns in
each genre.

Figure 6: Velocity heatmaps per genre for IHS generations
(left), validation set ground truth (center), and IH gener-
ations (right). Only the first four quarter-note beats are
shown as the plots are highly symmetrical

Figure 6 compares the velocity heatmaps of hi-hat pat-
terns obtained from the IHS and IH models against the
hi-hat patterns in the target set. Consistent with the find-
ings in the previous section, the generations from the sym-
bolic model (left plot) hold a noticeable similarity to the
audio-based model (right plot). Moreover, consistent with
the results in Section 3, the plots indicate that the gen-
erations in both cases have lower velocity ranges and are
also compactly populated around the gridlines. Addition-



ally, the generations corresponding to different genres hold
some degree of similarity to each other, while this similar-
ity does not always exist in the ground truth samples. In
other words, the generations are biased towards the over-
represented genres9 in the dataset. The velocity heatmaps
of the generations from other models10 illustrate that these
shortcomings exist in all of the models developed for this
work (see Figure 7 for IKS velocity heatmaps). In the fu-
ture iterations of the work, we will need to improve the
velocity and offset performance. Moreover, we will need to
investigate methods of dealing with the imbalances in the
dataset.

Figure 7: Velocity heatmaps per genre for IKS

5. DEPLOYMENT IN REAL PRODUCTION

SETTINGS
A major benefit of the representation used in this work is
that the models are computationally light, allowing the in-
ference to be carried out on the CPU. To take full advantage
of this potential, we have prepared a VST plugin consisting
of a Pure Data [23] graphical frontend and a command-
line based python backend. In this context, the frontend is
responsible for the visualization of the inputs and the gener-
ations and also allowing for interaction with the model. On
the other hand, the backend is in charge of extracting repre-
sentations from the audio inputs and subsequently running
inference on the models. Moreover, a file-based communi-
cation is used for transferring audio data from the frontend
to the backend, while an OSC [28] connection is used for
transferring the generations from the python backend to the
frontend so as to be visualized and played through the plu-
gin host. Figure 8 illustrates the interface of the developed
plugin.

Given that file-based communication can be very slow,
we limit the inter-process transfer of audio to a fixed length
equivalent to the duration of an eight note. Moreover, the
delay of the communication pipeline along with the addi-
tional delays caused by input preparation and model in-
ference result in a total latency of less than 100ms for 0.5
seconds of incoming audio. To improve the performance
and to allow for a seamless interaction with the models, we
are currently working on developing a self-contained VST3
plugin of the system using the JUCE framework [18]. This
plugin will be used for conducting user studies of the sys-
tem.

Lastly, to showcase the potentials of the system, a number
of demos have been prepared. These demos were prepared

9More than 10 genres/styles are available in GMD, but four
styles dominate the training data. Rock: 33%, Latin: 17%,
Jazz: 13%, Funk: 10%)

10Rest of the heatmaps available here:
wandb.ai/mmil_infilling

Figure 8: Interface for the VST plugin deploying TGI models

using samples collected from freesound.org [8]. The first
set of samples used consist of primarily percussive instru-
ments to investigate the performance of the system using
input types on which it was trained. That said, to demon-
strate the potential of the system in contexts outside of the
training task, we have also prepared a set of input loops
that are not primarily percussive. These demos, a tutorial
on how to use the system as well as all our source codes are
publicly available at:

transformergrooveinfilling.github.io

6. CONCLUSION
This paper presented a suite of models capable of infilling
audio drum loops with additional complementary symbolic
drum suggestions. Our models generate the infilling sugges-
tions using a simplified representation derived from audio
drum loop patterns. Our evaluations confirm that infilled
drum patterns are statistically similar to the training data.
However, the evaluations also indicate that while the gener-
ated patterns are structurally correlated with the training
data, they underperform in replicating the velocity and tim-
ing nuances available in the training set. Finally, our models
are relatively lightweight and computationally affordable to
deploy in practical applications involving users outside the
research community.
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