
AIMC 2023

NeuralMidiFx: A Wrapper
Template for Deploying
Neural Networks as VST3
Plugins
Behzad Haki Julian Lenz Sergi Jorda

URL: https://aimc2023.pubpub.org/pub/givwzz98

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

https://aimc2023.pubpub.org/pub/givwzz98
https://creativecommons.org/licenses/by/4.0/

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

2

ABSTRACT

Proper research, development and evaluation of AI-based generative systems of music that focus on

performance or composition require active user-system interactions. To include a diverse group of users that

can properly engage with a given system, researchers should provide easy access to their developed systems.

Given that many users (i.e. musicians) are non-technical to the field of AI and the development frameworks

involved, the researchers should aim to make their systems accessible within the environments commonly used

in production/composition workflows (e.g. in the form of plugins hosted in digital audio workstations).

Unfortunately, deploying generative systems in this manner is highly expensive. As such, researchers with

limited resources are often unable to provide easy access to their works, and subsequently, are not able to

properly evaluate and encourage active engagement with their systems. Facing these limitations, we have been

working on a solution that allows for easy, effective and accessible deployment of generative systems. To this

end, we propose a wrapper/template called NeuralMidiFx, which streamlines the deployment of neural

network based symbolic music generation systems as VST3 plugins. The proposed wrapper is intended to

allow researchers to develop plugins with ease while requiring minimal familiarity with plugin development.

1. Introduction
There has been, in recent years, a rapid surge of neural network models intended for content generation in a

variety of domains. In the past two years specifically, the advancement of the field has been so prominent that

many of these models, previously intended primarily for the research community, have now been increasingly

adopted by the public. As such, an ever-growing number of people are becoming more engaged in discussions

about these technologies.

Similar to other domains, research and development of AI-based music generation tools should actively invite

users outside of the research community to participate. This involvement can take many forms, including

subjective evaluation of model outputs, or in cases such as compositional assistant tools, direct engagement in

the creation process. In either regard, to encourage a broad and diverse set of viewpoints, developed systems

should be deployed in a manner that non-expert users with minimal familiarity with the technical tools

involved can easily access the models to subsequently interact with them.

It should be noted that our work is specially intended for the deployment of models during research

development stages (as opposed to commercial development). Our aim is to provide researchers of generative

models, with efficient deployment tools that will make these models more easily accessible to musicians to test

and interact with them.

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

3

1.1 Deployment Frameworks

Deploying systems in an easily accessible format is an extremely costly and time-consuming process that

requires a great deal of domain-specific knowledge of frameworks which is often outside of the expertise of the

researchers. Consequently, researchers with limited resources typically have to deploy their models in more

efficient ways; for instance, allowing access to models through a unique API usable through the command-line,

or cloud-based interactive computing platforms like Google Colab [1][2][3][4]. If resources are limited, these

methods are very valuable as they still allow users to access the developed systems. However, they can have a

limiting effect on engagement as some level of technical familiarity with the deployment environment is

required from the users. Moreover, the impractical user-interfaces available in these environments may

discourage users to persistently employ these tools in their creative workflows.

An alternative method of deployment that allows for easy access without technical familiarity is through an

interactive webpage. To name a few, folk-rnn [5], MuseNet [6], Latent Space Exploration [7] and Magenta.js

[8] invite users to interact via a dedicated web-page. While this method of deployment is certainly more

accessible and user-friendly compared to the previous methods, such implementations require significant

development time, and are still largely removed from the software environments that musicians typically utilise

in their creative workflows.

Tools such as RhythmVAE [9], Regroove , DeepBach [10], DrumNet [11], Anticipation-RNN [12] and

Magenta Studio [13] have deployed generative models either directly as standalone applications or as plugins

hosted in audio production environments such as Digital Audio Workstations (DAW), MaxMSP [14], PureData

[15] and Musescore. The benefit of this approach is that the developed systems can be easily employed in

production environments with which composers/producers are most familiar. However, these bespoke software

packages are written to host a specific model and would require extensive re-programming to host new

research models.

Lastly, in the context of audio-to-audio transformations, there are a number of applications that allow for

running neural networks wrapped as host-specific plugins (provided they meet certain technical criteria). For

instance, nn~, allows for running certain generative models as MaxMSP or PureData extensions. Moreover,

Neutone can wrap a variety of deep learning models as Virtual Studio Technology (VST) [16] plugins to be

hosted in DAWs. As such, these applications allow for easier integration of neural audio models in production

friendly environments. We recognize the positive contribution these tools have on future research, but are

presently unaware of any equivalent technology designed for symbolic music generation tasks.

1.2 Motivation

Within the context of music production applications, one of the most universal frameworks is VST. VST

applications are highly popular as they can be used as plugins within DAWs, allowing users to seamlessly load

a variety of third-party tools within their music production environment. While from the user point of view

https://colab.research.google.com/
https://folkrnn.org/
https://xai-lsr-ui.vercel.app/
https://koil.re/regroove/
https://musescore.org/
https://github.com/acids-ircam/nn_tilde
https://neutone.space/

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

4

these plugins are convenient to access, from the researchers’ perspective, they require a great deal of time and

expertise to implement.

For the past two years, we, as researchers working on performance-oriented symbolic music generation tasks,

have provided a number of prototypes of our work to musicians so as to allow them to interact with and

evaluate our systems prior to developing subsequent revisions. These prototypes generally consisted of a

graphical front-end communicating with a separate python back-end accessible through the command-line [17]

[18]. Throughout this process, we realized that (1) many users had difficulties in running the prototypes and (2)

these difficulties were often preventing persistent inclusion in our testers' production workflows. We concluded

that, in order to encourage reliable interactions with the system, we must package and deploy our models in a

manner that allowed the users to quickly setup the software and run it whenever inspiration struck. As a result,

we decided to re-develop our systems as VST3 plugins using Jules’ Utility Class Extensions (JUCE) [19]

framework.

Given that we did not have any prior experience with this deployment approach, we spent many months and

resources at the expense of conducting research on our main fields of interest. It became apparent that other

researchers in this domain must choose between going through similarly time-consuming processes, or

accepting a limited level of engagement from users. As such, we realized that the community at large can

benefit from our findings, which we have used to develop a general template that allows for deploying

symbolic generative neural network models of music. In this paper, we introduce the plugin template, its

capabilities and architecture, and finally discuss some of its potential use-cases and its current limitations.

2. NeuralMidiFx
NeuralMidiFX is a VST3 wrapper template based on the JUCE framework [19] for deploying generative

models of symbolic music. The intention behind this plugin is to facilitate the implementation of generative

models of symbolic music in an easy-to-access plugin format whilst streamlining a number of technically

challenging aspects of the deployment process, such as (1) multi-threaded design, (2) thread-safe data

communication, (3) parameter control, and (4) interface design. In section 2.1, we start with a brief overview of

the challenges involved in designing NeuralMidiFx, and subsequently, in section 2.2, we discuss the design

decisions made for developing the wrapper based on the involved challenges.

The following video provides a brief overview of this section.

Visit the web version of this article to view interactive content.

Video 1. Challenges of Deploying Symbolic NN-based Models of Music As VST Plugins

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

5

2.1 Design Challenges and Considerations

The VST framework, and by extension JUCE, poses a number of limitations to be considered when the aim is

to deploy neural network models of symbolic music that are often computationally intensive. Basic JUCE

plugins consist of two main threads: (1) AudioProcessor (AP) and (2) AudioProcessorEditor (APE). The AP

thread is in charge of two-way communication with the plugin host, while the APE thread is in charge of the

Graphical User Interface (GUI). In this framework, the AP thread is constructed once and is always active,

while the APE thread is constructed only when the plugin's GUI is in ‘view’ mode. In this section, we discuss

the challenges and requirements for developing a VST3 plugin from model deployment and user interface

generation perspectives.

2.1.1 Multi-Threaded Design

The communication between a VST3 plugin and a compatible host is done on a per-buffer basis. In JUCE, a

method (called processBlock) exists that is automatically called upon arrival of each new block of data. This

method is used for receiving information about the state of the plugin host1, receiving incoming audio/MIDI

data, and also sending outgoing audio/MIDI data. The lifespan of this method is limited to the lifespan of a

single buffer provided by the host2, i.e. only limited amount of time is available to carry out computations

within this method. As a result, intensive computations (such as generation using a neural network) must be

carried out in the background using a separate thread. Multi-threaded design can be extremely complicated to

develop and debug, hence, this design requirement is one of the major hurdles in the deployment process.

The multi-threaded design requires a mechanism to communicate data between the threads. An important

consideration to make with regards to inter-thread communication is that the data communication needs to be

both thread-safe and also lock-free: (1) thread-safe mechanisms ensure that data racing does not occur between

the threads, and (2) the lock-free implementation ensures a thread accessing a shared resource will not

potentially lock (or temporarily halt) the operations in another thread requiring access to the same resource

(specifically important in the case of the AudioProcessor thread). Moreover, certain communication

mechanisms should queue the incoming data in case the consumption of data is carried out at a lower rate. The

effort involved in developing safe and flexible communication mechanisms that meet all these requirements

can highly slow down the deployment process, specially when dealing with various data-types to be

communicated.

2.1.2 User Interface

The interaction between a user and a model is generally done through communicated MIDI messages and/or

through a selection of parameters that are controllable via a graphical interface. The selection of controllable

parameters is quite dependent on the target task. Once these selections are made, plugin development

frameworks like JUCE provide many valuable tools for creating graphical interfaces for the selected

parameters. That said, creating even basic interactive components that are stable, automatable through the host,

file:///tmp/docs.juce.com/master/classAudioProcessor.html
file:///tmp/docs.juce.com/master/classAudioProcessorEditor.html

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

6

and easily and safely accessible from all non-visual processes of the plugin, requires a great deal of familiarity

with the development framework.

Moreover, in the context intended for this work, the organization, aesthetics and the selection of the interactive

elements are very task dependent and may require high levels of customization. If the aim of the wrapper is to

significantly lower the cost for researchers to deploy their models as plugins, there should be a balance

between ease-of-use3 and customization. As such, the wrapper should provide tools that allow the researcher to

easily specify the graphical elements needed (with some limitations) while also allowing for some level of

customizable organization.

2.2 Design Decisions

The wrapper was to be developed for researchers that (1) do not have any prior experience with plugin

development and (2) require support for a variety of generative tasks. To accommodate this second point, we

concluded that any process that may be model specific should be the responsibility of the user of the template,

while any other aspect of the development should be fully streamlined by NeuralMidiFx. In this context, a

number of tasks are clearly the responsibility of the wrapper as they are model independent: handling the

reception of incoming information from the host, streaming of generated content, creating globally accessible

parameters, and rendering a graphical interface.

Additionally, model-dependent tasks can be divided into three stages: (1) Input Preparation: converting a

sequence of musical symbols (MIDI) and/or control parameters into a format required by a model, then (2)

Model Inference: passing the prepared input through the model for inference, and finally (3) Playback

Preparation: reformatting the model output back into MIDI to be played back by the host. These three stages

happen sequentially, however, they do not necessarily occur at the same rate (for example, a model may

generate a given output for every number of input MIDI messages received). Moreover, the computational

resources required for each stage can vary significantly. As a result, ideally these three stages should be

deployed in separate threads and communicate information between one another only when needed. While the

processes in these threads are model-specific (hence, responsibility of the user), the setup and initialization of

the threads as well as the inter-thread communication pipelines are independent of the model, and as a result,

NeuralMidiFx should be responsible for them.

Figure 1 illustrates the division of tasks between the researcher and the wrapper.

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

7

In the next section, we discuss how the architecture of NeuralMidiFx accommodates the design decisions

made.

3. Architecture
NeuralMidiFx consists of six main threads. Three of these threads do not require any modification (section 3.1)

while the developer preparing the plugin is responsible for adapting the other three threads (called Deployment

Threads) for their intended application (section 3.2). Lastly, to generate a graphical interface, the developer

only needs to provide a list of parameters with their corresponding required attributes (section 3.3). The

wrapper can automatically render the user interface for these parameters while also providing access to their

values across all major threads. Figure 2 illustrates an overview of the architecture of NeuralMidiFx.

Figure 1. Division of tasks in the deployment process.
The proposed wrapper, NeuralMidiFx, fully automates the deployment processes that are

specific to plugin development frameworks. However, tasks related to the model are not fully
automated as they are highly dependent on the specific task at hand. Nonetheless, knowing
that the stages involved in the inference process can be distinctly divided into three separate
procedures (Input Preparation, Model Inference, and Output Preparation/Post-Processing),
NeuralMidiFx provides dedicated threads for each of these procedures, with specific access
points made available to the researcher. This allows for greater control and customization of

the model-related tasks, while still providing an easy and streamlined process for plugin
development.

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

8

3.1 Communication with the Plugin Host

As discussed in section 2.1, the AudioProcessorThread for NeuralMidiFx (called NMP) is in charge of

receiving information from the host, and if required, also provide playback data in return (on a per-frame

basis).

3.1.1 Incoming Data

In the context envisioned for NeuralMidiFx, the host may provide two types of data for each buffer:

While the JUCE framework provides all necessary utilities to access this information from the host (if

available4), depending on the task intended, some of this data requires further processing.5 Moreover, there are

different timing conventions that can be used for timed information: (1) seconds, (2) quarter notes, and (3)

audio samples.

The NMP thread internally conducts all necessary processing of the Play-head Metadata and MIDI Messages

provided by the host, and wraps each one in a custom datatype (called Event), and finally, sends them to the

next thread to be used for preparation of the model's input(s). Figure 3 demonstrates the different situations for

which Events can be generated.

Figure 2. Architecture of the plugin - white boxes tagged with a red dot require additional
implementation by the developer while all other threads/communication means are readily

available and don't need any interaction from the developer.

1. Play-head Metadata: Information about the buffer location and attributes such start time, tempo, meter,

sample rate, buffer size, playing/recording/looping status, and loop points of the host,

2. MIDI Messages: Note On, Note Off and/or Controller messages within the buffer

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

9

3.1.2 Outgoing Data

Any audio/MIDI data to be played back by the host is also provided on a per-buffer basis within the same

thread from which the incoming data is received. Moreover, the plugin can only provide MIDI messages for

playback if the timing of messages overlap with the buffer. As a result, to playback a stream of previously

generated MIDI messages, the NMP thread must constantly find valid messages overlapping with a given

buffer, and subsequently, release them to the host using an accepted timing convention.6 Complying with all

these requirements, NeuralMidiFx automatically manages the streaming of any generated MIDI messages with

any timing convention preferred by the developer.

3.2 Deployment Threads

NeuralMidiFx dedicates three threads respectively for preparing the inputs of a model (section 3.2.1), running

inference (section 3.2.2), and reformatting the generations into MIDI messages for playback via the host

(section 3.2.3). In these threads, the wrapper provides a set of utilities for easily receiving and sending

information from/to the threads via the previously implemented inter-thread communication pipelines (section

3.2.4).

3.2.1 InputTensorPreparator Thread (ITP)

Prior to running the inference on a given model, all or some of the host's play-head information, incoming

MIDI messages, and possibly parameters controlled via a graphical interface must be reformatted according to

a given model's input requirements. In this thread, all necessary information is sequentially provided to carry

out the tokenization (or representation) of the relevant symbolic information into a tensor-like format.

The method of tokenization can vary greatly, with each task having different priorities and contextual

requirements. For example, a model focused on composing melodies with structural awareness such as the Jazz

Figure 3. NeuralMidiFx pre-processes and sequentially transmits all necessary Events
received from the host. The messages are transmitted sequentially in the order of occurrence,

and are time-stamped in different units (seconds, quarter notes, and samples). Users can
specify which Events should be transmitted, for example, if Bar locations or Tempo

information are not used for tokenization, there is no need to be notified about these Events).

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

10

Transformer [20] requires encapsulation of chord and phrase events, whereas a drum generation model such as

GrooVAE [21] needs information on rhythmic micro-timings. There are several popular tokenization formats,

such as REMI [4], Compound Word [22], and Octuple [23], which are typically re-used with minor

modifications for subsequent research, but there is no single universal standard.7

Whilst it is not possible - nor efficient - to provide support for every type of tokenization in a single VST

plugin, most methods rely upon a similar subset of message types: note (note on/off, pitch, velocity), timing

(duration, time-shift, bar position), and host information (time signature, tempo, playhead status). As shown in

Figure 3, NeuralMidiFX provides all of these messages in an easily-accessible format, enabling researchers to

quickly access relevant bytes of data during inference and process them accordingly (see Algorithm 1).

3.2.2 Model Thread (MDL)

Whenever a new input sequence is to be passed through a model for inference, the ITP thread sends the

prepared input sequence to the model thread via a pre-implemented pipeline between the two threads. Upon

arrival of the new input sequence, the received sequence is passed through the model to come up with a

generation. Subsequently, the generations are passed on to the next thread responsible for extracting the note

events from the generations (see Algorithm 2).

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

11

3.2.3 PlaybackPreparator Thread (PPP)

Once a new generation is received from the model thread, the PPP thread extracts note on/off or controller

events from the generations. Using the implementations provided by the developer, the corresponding timing

of each of the extracted events should then be calculated, and subsequently, the extracted events with their

associated timings (in any unit) should be sent over to the NMP thread for playback.

To play generations properly, before receiving a sequence of generations, the wrapper requires the user to

specify the playback policy that should be assumed. Playback policies refer to (1) whether new generations

overwrite previous ones, and (2) whether the timing of generations are relative to absolute zero, relative to

playback position when host started, or relative to the time the policy specification is received by the host (see

Algorithm 3).

3.2.4 Thread-Safe Data Communication

One important feature of NeuralMidiFx is that all inter-thread communication pipelines are already developed

and are ready to use. Moreover, the implementation is such that we ensure that the data is safely provided

sequentially from one thread to next via lock-free queues. The datatype communicated between most of the

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

12

threads is already defined and does not require any modification from the developer. However, given that the

input/output interface of a model is only known to the developer, the input/output structures communicated

both between ITP and MDL threads and MDL and PPP threads need to be adapted to include all required

parameters.

3.3 Parameter Thread and GUI

To declare the parameters, developers only need to provide the wrapper with a custom structure specifying (1)

the required parameters (each identifiable via a unique textual label), (2) the operable ranges and default

values, and (3) specifying how the parameters should be visually rendered (i.e. what interactive elements

should be used for each parameter and how each subset of parameters should be visually grouped together in

separate tab). Below is an example of one such tuple.

Figure 4 shows the rendered interface for the parameters specified above. Note that all rendered interfaces are

manually re-sizable in run-time to allow proper display on different screen sizes.

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

13

In addition to the interface generation, NeuralMidiFx ensures that all these parameters are automatable from

the host, and also the values of the parameters are always accessible in the deployment threads using only their

textual identifiers. Automation and communication of the value of these parameters is carried out using an

abstracted mechanism implemented in a dedicated thread called Parameter Thread (see Figure 2). This thread

takes advantage of JUCE's AudioProcessorValueTreeState utilities, to access the parameters associated with

each graphical element and distribute them to all necessary threads using implemented safe inter-thread

communication pipelines.

4. Discussion
With NeuralMidiFx wrapper, symbolic-to-symbolic generative systems of music, that are based on neural

networks, can be deployed as VST3 plugins. The major benefit of this wrapper is that many stages of the

deployment process that deal with VST3 framework-specific limitations/requirements are automated, hence,

the wrapper significantly eases the technical and financial barriers that generally demotivate resource-limited

researchers from deploying their models in this user-friendly format. In other words, the wrapper allows

researchers to spend the majority of the deployment process on tasks with which they have most familiarity.

Figure 4. An example of automatically generated plugin interface
with two tabs. Figure is showing the first tab of the interface

https://docs.juce.com/master/classAudioProcessorValueTreeState.html

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

14

As discussed previously in section 2.1, deploying neural network based generative models in a plugin format

requires a multi-threaded design. Developing multi-threaded applications with safe and reliable means of data

communication is a very complicated, hard-to-debug, and time-consuming task. Likewise, implementation of

plugin-host communication mechanisms and also designing a graphical interface are other aspects of the

deployment process that require a great deal of time and technical expertise. To speed up the deployment

process, NeuralMidiFx abstracts these processes from the developer allowing them to focus mainly on the

model-related implementations.

As many processes in the template are static (i.e. are abstracted and are not modifiable), NeuralMidiFx

provides the users with a limited number of access points to the template, clearly clarifying the role of the

developers in the deployment process (as discussed in section 3.2). That said, these limited access points are

flexible enough to accommodate symbolic generation tasks ranging from unconditional, uncontrollable and

non-real-time generative tasks to conditional, controllable, real-time generative tasks [24].

While we believe that the existing architecture of the wrapper is flexible enough to accommodate any symbolic

music generation system, the existing structure is only capable of deploying serialized PyTorch models [25].

As such, using other model types requires a conversion to this format. Moreover, at this point NeuralMidiFx

only supports CPU inference, meaning that computationally intensive models may have poor performance if

deployed using the template.

We are currently using this wrapper for deploying our own generative systems as VST3 plugins so as to

evaluate them in production/creative settings. As such, we will be actively working on improving the provided

template based on our personal experiences with the system. At this point, we have identified a number of

features to be implemented in the near future. An overview of these features is provided in the next section.

5. Future Works
There are a number of improvements that can further simplify and optimize the deployment process:

The last feature that can be highly valuable is automatic tokenization of incoming events to any of the familiar

formats discussed in section 3.2.1.

1. provide support for generalized model formats such as ONNX [26]

2. provide support for GPU inference

3. provide a stand-alone version of the wrapper

4. provide better debugging tools such as (a) automatic visual piano-roll rendering of generated contents, (b)

utilities for importing/exporting MIDI files by drag-in/drag-out interactions, (c) text editor panels for

displaying messages

https://aimc2023.pubpub.org/pub/givwzz98#inputtensorpreparator-thread-itp

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

15

6. Conclusions
NeuralMidiFx allows developers to easily and efficiently create VST3 plugins that employ neural network

based generative models of symbolic music. The template divides the deployment process into two parts: (1)

VST3 framework-related tasks, and (2) model-related tasks. In this template, the developer is only responsible

for the tasks related to the model, while all development tasks related to VST3 framework such as

implementation of a multi-threaded architecture, inter-thread communication, exchange of information

between plugin and host, and graphical interface design and rendering are all automated by the template. This

clear division of tasks in NeuralMidiFx allows researchers, even those with minimal knowledge of plugin

development, to be able to deploy and share their systems in a user-friendly format. Lastly, the source code and

a number of video tutorials8 for NeuralMidiFx are publicly available at:

https://github.com/behzadhaki/NeuralMidiFXPlugin.git

We hope that this project encourages other researchers in the community to help us improve the design and

implementation of the wrapper by either directly collaborating with us or by providing us with suggestions on

what modifications to be made in the future.

Acknowledgments
This research was partly funded by the Ministry of Science and Innovation of the Spanish Government.

Agencia Estatal de Investigación (AEI). (Reference: PID2019-111403GB-I00).

Ethics Statement
The main intention behind this work is to facilitate and encourage researchers in the field to make their works

more accessible to the public in a user-friendly format that does not exclude non-technical users. This

involvement of the stakeholders early in the design process may lead to more responsible, human-centric and

ethical pursuits of research in the field of generative AI. Moreover, this work is also intended for inclusion of

researchers with more limited resources in the discussions around AI and music generation, specifically, by

allowing the researchers to promote, at a lower cost, their works to a wider audience.

Throughout this work, we were not in any situation that gave rise to a conflict of interest.

Footnotes
1. such as sample rate, buffer size, tempo, time signature, whether host is in play, loop and/or record modes,

and so on. See docs.juce.com/master/classAudioPlayHead.html ↩

2. Lifespan here is less than the block size in seconds. e.g., for a 128-sample block size at a sample rate of

44.1kHz, the processBlock is operable for a maximum of 2.8ms ↩

https://github.com/behzadhaki/NeuralMidiFXPlugin/blob/master/README.md
https://github.com/behzadhaki/NeuralMidiFXPlugin.git
http://docs.juce.com/master/classAudioPlayHead.html

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

16

References

3. Ease-of-use from the perspective of the developer (i.e. researcher in this case). Not to be confused with

ease-of-use from the perspective of the plugin user (i.e. musicians) ↩

4. Availability of some of the buffer metadata is not guaranteed, that is, some hosts may not provide some of

the metadata fields ↩

5. For instance, the start time of each buffer is provided in absolute time, while the start time of each MIDI

event is provided relative to the beginning of the buffer ↩

6. In this case, the messages must be timed in terms of audio samples relative to the start time of a buffer ↩

7. The MidiTok library (https://github.com/Natooz/MidiTok) provides an excellent overview and

implementation of several popular methods. ↩

8.

Video Tutorials

Tutorial 1: Introduction to NeuralMidiFx

https://www.youtube.com/watch?v=o_4NsttseDw

Tutorial 2: Parameters and GUI Generation

https://youtu.be/r3oBxg6RQmM

Tutorial 3: InputTensorPreparator Thread (ITP)

https://youtu.be/B2UUSiIU7Y0

Tutorial 4: Model Thread (MDL)

https://youtu.be/VnSaHGR_6JA

Tutorial 5: PlaybackPreparatorThread (PPP)

 https://youtu.be/SMbSrPlxubM ↩

Dorsey, B. (2017). MIDI-RNN. https://brangerbriz.com/blog/ using-machine-learning-to-create-new-

melodies. https://brangerbriz.com/blog/ using-machine-learning-to-create-new-melodies ↩

Ens, J., & Pasquier, P. (2020). MMM : Exploring Conditional Multi-Track Music Generation with the

Transformer. CoRR, abs/2008.06048. https://arxiv.org/abs/2008.06048 ↩

Gillick, J., Roberts, A., Engel, J. H., Eck, D., & Bamman, D. (2019). Learning to Groove with Inverse

Sequence Transformations. In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the 36th

https://github.com/Natooz/MidiTok
https://www.youtube.com/watch?v=o_4NsttseDw
https://youtu.be/r3oBxg6RQmM
https://youtu.be/B2UUSiIU7Y0
https://youtu.be/VnSaHGR_6JA
https://youtu.be/SMbSrPlxubM
https://brangerbriz.com/blog/
https://brangerbriz.com/blog/
https://arxiv.org/abs/2008.06048

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

17

International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA

(Vol. 97, pp. 2269–2279). PMLR.↩

Hadjeres, G., & Nielsen:, F. (2020). Anticipation-RNN: enforcing unary constraints in sequence generation,

with application to interactive music generation. Neural Comput. Appl., 32(4), 995–1005.

https://doi.org/10.1007/s00521-018-3868-4 ↩

Hadjeres, G., Pachet, F., & Nielsen, F. (2017). DeepBach: a Steerable Model for Bach Chorales Generation.

In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th International Conference on Machine Learning,

ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Vol. 70, pp. 1362–1371). PMLR.

http://proceedings.mlr.press/v70/hadjeres17a.html ↩

Haki, B., Nieto, M., Pelinski, T., & Jordà, S. (2022, September). Real-Time Drum Accompaniment Using

Transformer Architecture. Proceedings of the 3rd Conference on AI Music Creativity.

https://doi.org/10.5281/zenodo.7088343 ↩

Hsiao, W.-Y., Liu, J.-Y., Yeh, Y.-C., & Yang, Y.-H. (2021). Compound Word Transformer: Learning to

Compose Full-Song Music over Dynamic Directed Hypergraphs. Proceedings of the AAAI Conference on

Artificial Intelligence. ↩

Huang, Y.-S., & Yang, Y.-H. (2020). Pop Music Transformer: Beat-based modeling and generation of

expressive Pop piano compositions. Proceedings of the 28th ACM International Conference on Multimedia.

↩

Ji, S., Luo, J., & Yang, X. (2020). A Comprehensive Survey on Deep Music Generation: Multi-level

Representations, Algorithms, Evaluations, and Future Directions. CoRR, abs/2011.06801.

https://arxiv.org/abs/2011.06801 ↩

JUCE. (2023). Jules’ utility class extensions (Version 7). In JUCE: Jules’ Utility Class Extensions.

https://juce.com/. https://juce.com/ ↩

Lattner, S., & Grachten, M. (2019). High-Level Control of Drum Track Generation Using Learned Patterns

of Rhythmic Interaction. CoRR, abs/1908.00948. http://arxiv.org/abs/1908.00948 ↩

Nuttall, T., Haki, B., & Jorda, S. (2023). Completing Audio Drum Loops with Symbolic Drum Suggestions.

NIME 2023. ↩

ONNX. (2022). Open Neural Network Exchange. In ONNX. https://onnx.ai/. https://onnx.ai/ ↩

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,

B., Fang, L., … Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In Advances in Neural Information Processing Systems 32 (pp. 8024–8035). Curran Associates, Inc.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

↩

Pati, A., & Lerch, A. (2021). Attribute-based regularization of latent spaces for variational auto-encoders.

Neural Comput. Appl., 33(9), 4429–4444. https://doi.org/10.1007/s00521-020-05270-2 ↩

Payne, C. (2019). MuseNet. OpenAI. ↩

https://doi.org/10.1007/s00521-018-3868-4
http://proceedings.mlr.press/v70/hadjeres17a.html
https://doi.org/10.5281/zenodo.7088343
https://arxiv.org/abs/2011.06801
https://juce.com/
https://juce.com/
http://arxiv.org/abs/1908.00948
https://onnx.ai/
https://onnx.ai/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s00521-020-05270-2

AIMC 2023 NeuralMidiFx: A Wrapper Template for Deploying Neural Networks as VST3 Plugins

18

Puckette, M. S., & others. (1997). Pure data. ICMC. ↩

Puckette, M., Zicarelli, D., & others. (1990). Max/msp. Cycling, 74, 1990–2006.

https://cycling74.com/products/max ↩

Roberts, A., Engel, J., Mann, Y., Gillick, J., Kayacik, C., Nørly, S., Dinculescu, M., Radebaugh, C.,

Hawthorne, C., & Eck, D. (2019). Magenta Studio: Augmenting Creativity with Deep Learning in Ableton

Live. Proceedings of the International Workshop on Musical Metacreation (MUME).

http://musicalmetacreation.org/buddydrive/file/mume_2019_paper_2/ ↩

Smilkov, D., Thorat, N., Assogba, Y., Nicholson, C., Kreeger, N., Yu, P., Cai, S., Nielsen, E., Soegel, D.,

Bileschi, S., & others. (2019). Tensorflow. js: Machine learning for the web and beyond. Proceedings of

Machine Learning and Systems, 1, 309–321. ↩

Steinberg Media Technologies. (2022). Virtual Studio Technology (VST). In VST 3 SDK . Steinberg Media

Technologies. https://steinbergmedia.github.io/vst3_doc/vstsdk/index.html ↩

Sturm, B., Santos, J. F., & Korshunova, I. (2015). Folk music style modelling by recurrent neural networks

with long short term memory units. 16th International Society for Music Information Retrieval Conference.

↩

Tokui, N. (2020). Towards democratizing music production with AI-Design of Variational Autoencoder-

based Rhythm Generator as a DAW plugin. CoRR, abs/2004.01525. https://arxiv.org/abs/2004.01525 ↩

Wu, S.-L., & Yang, Y.-H. (2020). The Jazz Transformer on the Front Line: Exploring the Shortcomings of

AI-composed Music through Quantitative Measures. In J. Cumming, J. H. Lee, B. McFee, M. Schedl, J.

Devaney, C. McKay, E. Zangerle, & T. de Reuse (Eds.), Proceedings of the 21th International Society for

Music Information Retrieval Conference, ISMIR 2020, Montreal, Canada, October 11-16, 2020 (pp. 142–

149). http://archives.ismir.net/ismir2020/paper/000339.pdf ↩

Yu, B., Lu, P., Wang, R., Hu, W., Tan, X., Ye, W., Zhang, S., Qin, T., & Liu, T.-Y. (2022). Museformer:

Transformer with Fine- and Coarse-Grained Attention for Music Generation. CoRR, abs/2210.10349.

https://doi.org/10.48550/arXiv.2210.10349 ↩

Zeng, M., Tan, X., Wang, R., Ju, Z., Qin, T., & Liu, T.-Y. (2021). MusicBERT: Symbolic Music

Understanding with Large-Scale Pre-Training. ↩

https://cycling74.com/products/max
http://musicalmetacreation.org/buddydrive/file/mume_2019_paper_2/
https://steinbergmedia.github.io/vst3_doc/vstsdk/index.html
https://arxiv.org/abs/2004.01525
http://archives.ismir.net/ismir2020/paper/000339.pdf
https://doi.org/10.48550/arXiv.2210.10349

